Pitfalls in Designing Zero-Effort Deauthentication: Opportunistic Human Observation Attacks presented at NDSS 2016

by Nitesh Saxena, N. Asokan, Swapnil Udar, Otto Huhta, Mika Juuti, Prakash Shrestha,

Summary : Deauthentication is an important component of any authentication system. The widespread use of computing devices in daily life has underscored the need for zero-effort deauthentication schemes. However, the quest for eliminating user effort may lead to hidden security flaws in the authentication schemes.
As a case in point, we investigate a prominent zero-effort deauthentication scheme, called ZEBRA, which provides an interesting and a useful solution to a difficult problem as demonstrated in the original paper. We identify a subtle incorrect assumption in its adversary model that leads to a fundamental design flaw. We exploit this to break the scheme with a class of attacks that are much easier for a human to perform in a realistic adversary model, compared to the naive attacks studied in the ZEBRA paper. For example, one of our main attacks, where the human attacker has to opportunistically mimic only the victim’s keyboard typing activity at a nearby terminal, is significantly more successful compared to the naive attack that requires mimicking keyboard and mouse activities as well as keyboard-mouse movements. Further, by understanding the design flaws in ZEBRA as cases of tainted input, we show that we can draw on well-understood design principles to improve ZEBRA’s security.