IoTFuzzer: Discovering Memory Corruptions in IoT Through App-based Fuzzing. presented at NDSS 2018

by Kehuan Zhang, Xiaofeng Wang, Zhiqiang Lin, Wing Cheong Lau, Wenrui Diao, Chaoshun Zuo, Ronghai Yang, Jiongyi Chen, Qingchuan Zhao, Menghan Sun,

Summary : With more IoT devices entering the consumer market, it becomes imperative to detect their security vulnerabilities before an attacker does. Existing binary analysis based approaches only work on firmware, which is less accessible except for those equipped with special tools for extracting the code from the device. To address this challenge in IoT security analysis, we present in this paper a novel automatic fuzzing framework, called IOTFUZZER, which aims at finding memory corruption vulnerabilities in IoT devices without access to their firmware images. The key idea is based upon the observation that most IoT devices are controlled through their official mobile apps, and such an app often contains rich information about the protocol it uses to communicate with its device. Therefore, by identifying and reusing program-specific logic (e.g., encryption) to mutate the test case (particularly message fields), we are able to effectively probe IoT targets without relying on any knowledge about its protocol specifications. In our research, we implemented IOTFUZZER and evaluated 17 real-world IoT devices running on different protocols, and our approach successfully identified 15 memory corruption vulnerabilities (including 8 previously unknown ones).