Reduced Cooling Redundancy: A New Security Vulnerability in a Hot Data Center. presented at NDSS 2018

by Haining Wang, Zhang Xu, Xiaorui Wang, Li Erran Li, Xing Gao,

Summary : Data centers have been growing rapidly in recent years to meet the surging demand of cloud services. However, the expanding scale and powerful servers generate a great amount of heat, resulting in significant cooling costs. A trend in modern data centers is to raise the temperature and maintain all servers in a relatively hot environment. While this can save on cooling costs given benign workloads running in servers, the hot environment increases the risk of cooling failure. In this paper, we unveil a new vulnerability of existing data centers with aggressive cooling energy saving policies. Such a vulnerability might be exploited to launch thermal attacks that could severely worsen the thermal conditions in a data center. Specifically, we conduct thermal measurements and uncover effective thermal attack vectors at the server, rack, and data center levels. We also present damage assessments of thermal attacks. Our results demonstrate that thermal attacks can (1) largely increase the temperature of victim servers degrading their performance and reliability, (2) negatively impact on thermal conditions of neighboring servers causing local hotspots, (3) raise the cooling cost, and (4) even lead to cooling failures. Finally, we propose effective defenses to prevent thermal attacks from becoming a serious security threat to data centers.