Security of GPS/INS based On-road Location Tracking Systems presented at IEEESymposium 2019

by Sashank Narain, Guevara Noubir, Aanjhan Ranganathan,


Summary : Location information is critical to a wide variety of navigation and tracking applications. GPS, today's de-facto outdoor localization system has been shown to be vulnerable to signal spoofing attacks. Inertial Navigation Systems (INS) are emerging as a popular complementary system, especially in road transportation systems as they enable improved navigation and tracking as well as offer resilience to wireless signals spoofing and jamming attacks. In this paper, we evaluate the security guarantees of INS-aided GPS tracking and navigation for road transportation systems. We consider an adversary required to travel from a source location to a destination and monitored by an INS-aided GPS system. The goal of the adversary is to travel to alternate locations without being detected. We develop and evaluate algorithms that achieve this goal, providing the adversary significant latitude. Our algorithms build a graph model for a given road network and enable us to derive potential destinations an attacker can reach without raising alarms even with the INS-aided GPS tracking and navigation system. The algorithms render the gyroscope and accelerometer sensors useless as they generate road trajectories indistinguishable from plausible paths (both in terms of turn angles and roads curvature). We also design, build and demonstrate that the magnetometer can be actively spoofed using a combination of carefully controlled coils. To experimentally demonstrate and evaluate the feasibility of the attack in real-world, we implement a first real-time integrated GPS/INS spoofer that accounts for traffic fluidity, congestion, lights, and dynamically generates corresponding spoofing signals. Furthermore, we evaluate our attack on ten different cities using driving traces and publicly available city plans. Our evaluations show that it is possible for an attacker to reach destinations that are as far as 30 km away from the actual destination without being detected. We also show that it is possible for the adversary to reach almost 60--80% of possible points within the target region in some cities. Such results are only a lower-bound, as an adversary can adjust our parameters to spend more resources (e.g., time) on the target source/destination than we did for our performance evaluations of thousands of paths. We propose countermeasures that limit an attacker's ability, without the need for any hardware modifications. Our system can be used as the foundation for countering such attacks, both detecting and recommending paths that are difficult to spoof.